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Polariton theory of resonant Raman scattering in polar 
semiconductors: local-field effects and crystal optics 
approximation 
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VNVTU ‘T Kableshkov’, Department of Physics, 1574 Sofia, Bulgaria 

Received 6 May 1988, in final form 12 December 1988 

Abstract. The theory of the first-order resonant Raman scattering in polar semiconductors, 
when the energy of the incident photons is in the region of the exciton energies, is presented. 
Local-field effects are taken into account. The explicit introduction of boson annihilation 
and creation operators for the exciton states, as well as the treatment of the phonon 
system within the framework of perturbation theory, are avoided. The method of Legendre 
transforms is used to derive the Bethe-Salpeter equation for the two-particle electron-hole 
Green function. In the case of the first-order Raman effect only the single-phonon line 
diagrams, contributing to the kernel of the Bethe-Salpeter equation, must be taken into 
consideration. This treatment provides an equation for obtaining the ‘dressed’ (by the 
interaction with phonons) polariton spectra. Knowledge of the imaginary part of the pola- 
riton frequency provides both the decay rate of the number of the quanta in the incident 
radiation and the Raman efficiency. On the basis of this theory the influence of local-field 
effects on the Raman efficiency is discussed. 

1. Introduction 

The interest in polariton approaches to resonant Raman scattering (RRS) and to the 
theoretically equivalent resonant Brillouin scattering (RBS) can be understood from the 
fact that those techniques have been established as the best ones for the investigation of 
exciton states and excitonic polariton parameters (Kotels 1982, Weisbuch and Ulbrich 
1982). 

Turning our attention to the theoretical situation, we find that two approaches have 
been used to define RRS (or RBS) cross-sections within the polariton framework. The first 
approach is based on the factorisation of the three sequential scattering events. 

(i) The incident photon is transmitted across the interface and produces a polariton 
inside the crystal. 

(ii) The scattering from one polariton state to another occurs due to the emission or 
absorption of a phonon. 

(iii) The scattered polariton is transmitted out of the crystal to produce the scattered 
photon. 

Although most theoretical efforts have been focused mainly on step (ii) (Ovander 
1961,1962, Mills and Burstein 1969, Hopfield 1969) in order to make the first approach 

0953-8984/89/499853 + 14 $02.50 @ 1989 IOP Publishing Ltd 9853 



9854 2 G Koinov 

complete, we must include all three steps (i)-(iii), especially solid angle effects due to 
the discontinuous change in momentum across the boundaryin step (iii) (Lax and Nelson 
1975). 

The second approach, originating with the works by Brenig (Brenig et a1 1972) and 
Zeyher (Zeyher et a1 1972, 1974), is to consider the Raman scattering of photons in a 
crystal as a single unified process involving refraction, absorption and scattering. In 
terms of the above method RRS is regarded as a combination of elastic surface scattering 
of phonons at the vacuum-crystal interface andinelasticscattering of excitonicpolaritons 
inside the semi-infinite crystal. Surface scattering is treated by defining normal modes 
over the whole space, in a manner that incoming and outgoing normal modes reduce 
asymptotically to free photons far from the crystal, but they are excitonic polaritons 
inside the crystal. The inelastic phonon scattering between the normal modes inside the 
crystal is described by using the Born approximation. 

At first sight the above mentioned approaches are two independent ways to formulate 
the RRS cross section. However, the second approach has been regarded as the better 
one, since it is free from the factorisation approximation for sequential scattering events. 
The equivalence between the two approaches for the RRS cross-section calculation 
(Matsushita and Nakayama 1984) is now well established. 

Turning our attention to the details of the two equivalent approaches, we find some 
disadvantages as follows. 

(i) The phonon system has been treated within the framework of perturbation theory, 
while the interaction with phonons may become substantial, especially in the presence 
of polar longitudinal optical phonons in non-centrosymmetric polar crystals. 

(ii) With the exception of the work by Mills and Burstein (1969), almost all of the 
above mentioned studies are based on the complicated procedure of introducing boson 
annihilation and creation operators for the exciton states (see for example Steyn-Ross 
and Gardiner 1983). 

(iii) The contribution of the local-field effects to the polariton spectra, and therefore 
to the RRS cross section, has not been taken into consideration. 

The purpose of this paper is to carry on our recently published field theoretical 
approach to the theory of polaritons (Glinskii and Koinov 1986, 1987, Koinov and 
Glinskii 1988) in order to overcome the above mentioned disadvantages of the RRS cross 
section calculations. 

In § 2 we outline the general viewpoint and some of the main results of our field 
theoretical approach to the polariton theory. We then derive an expression for the 
Raman efficiency which takes into account the local-field effects. In 8 3 we give some 
explicit numerical and graphical results for the RRS cross section in copper halides in 
order to evaluate how large the local-field effects are compared to the older work by 
Mills and Burstein (1969). 

2. First-order resonant Raman scattering through excitonic polaritons 

2.1. Excitation spectra in zero-order approximation 

In a previous publication (Koinov and Glinskii 1988), referred to as paper 1, we have 
pointed out that the photon D,, (Q; imp), phonon 
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and two-particle electron-hole Green function 

have common poles, located at the energies ho,(Q),  which are just the polariton modes 
with a band index v and a wavevector Q (Q is a vector within the Brillouin zone). The 
polariton spectrum has to be computed numerically for actual crystals with appropriate 
values for 'bare' phonon energies hQA(Q) using the exact one-electron states. It can be 
said that for a wavevector Q such that cQ is in the region of exciton energies (c is the 
vacuum speed of light), the branches in the high-energy part of the spectrum are mostly 
excitonic polaritons with a small phonon content, and the low-energy ones are mostly 
phonons with a small polariton contribution. The number of branches is equal to the 
total number of modes. In the limit when the photon-phonon interaction is vanishingly 
small, referred to as the zero-order approximation, we have the specific case where the 
excitons and photons are coupled into excitonic polaritons, while the phonon system is 
independent. In the zero-order approximation the photon and the two-particle electron- 
hole Green functions have common poles oLo)(Q), while the phonon Green function is 
equal to the 'bare' one. Thus, taking the limit xnp( z  1 e )  + 0 in equations (43) of paper 
1 ,  one sees that 

D;j(Q; iwp)x+o = D$K")-l(Q; io,) = Dtd-'(Q; io P ) - II(e-u) 4 (Q; io,)  ( l a )  

In the above equation and throughout this paper we use the same notation as in 
paper 1. K L  is a two-particle electron-hole Green function for 'mechanical' excitons, 
which takes into account the Elliott exchange interaction (see definition (42b) of 
paper 1) .  The photon self-energy IIti") is obtained from equation (43c) of paper 1 by 
taking the limit xap(z 15) + 0: 

1 
( Q ;  = II$K") (Q;imp> = m ( r * i  0 2 I i ^ w ( Q ) I r i , ~ ~ i )  



9856 Z G Koinov 

In the zero-order approximation the spectrum of the excitonic polaritons U;')( Q) are 
solution of the following equation: 

where the tensor &$-")follows from equation (43a) of paper 1 in the limit xuP(z I E )  + 0: 

Let us define the photon polarisation vectors eu(i; Q) ( i  = 1,2 ,3)  in a manner that 
e,(3; Q) = Q,/l Q 1 and the following normalisation conditions must be fulfilled: 

2 e,(i; €!)e: ( j ;  Q )  = 6ij e,(i; Q)eg* (i; Q )  = deb. 
a = x . y , z  i =  1,2,3 

In the new basis the photon Green function ( l a )  and the dielectric tensor (2a) assume 
the form 

D ~ - " ) < Q ;  io,) = C. ea(i;  Q ) D $ ~ ) ( Q ;  io,)eg* ( j ;  Q )  

E ~ ; - w ) ( Q ;  iw,) = 2 ee( i ;  Q )  E $ ; w ) < Q ;  io , )  eg*( j ;  Q). 

(3a) 

(3b) 

n,P 

e. P 

For simplicity we will consider only crystals with a cubic point group. In this case, 
the symmetry considerations imply D f - u ) ( Q ;  io,) = Si ,Di(Q; io,)  and 
&f-")(Q; iw,) = dij&(Q; io,)  where, for ( i  = 1,2)  

D i ( Q ;  io , )  = 4 n h ~ ~ / [ ( i o , ) ~ ~ ( Q ;  io,)  - c 2 Q 2 ]  

D 3 ( Q ;  io,)  = 4 n h ~ ~ / ( i o , ) ~ & ( Q ;  io,). 

(4a) 

(4b) 
In the case of cubic crystals there are two types of excitonic polaritons: transverse 

normal modes oLo)(Q) and longitudinal ones Qlo)(Q). They satisfy the following 
equations: 

[ w k 0 ) ( Q ) ] * ~ ( Q ;  oIo)) = c2Q2  (5a)  

&(e; Q;?(Q)) = 0. (5b) 

The contributions of the two types of polaritons to the analytical continuations of 
the functions (4a) and (4b) are 

4nhc2 1 
D i ( Q ; o )  + w-+wp) {(a/ao)[02&(Q; w ) ] } w = ~ ~ O ~  

2.2. Excitation spectra in the case of an instantaneous electron-phonon interaction 

In this section our attention will be focused on step (ii) of the first approach, that is the 
scattering from one polariton state to another due to the emission (Stokes scattering) or 
absorption (anti-Stokes scattering) of a phonon. 
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Amore realistic approximation than the zero-order one is to assume that the excitonic 
polaritons and the phonons interact via an instantaneous electron-phonon interaction. 
In this case the two-particle electron-hole Green function and the photon propagator 
have common poles, while the poles of the phonon Green function are located at the 
energies hGi,(Q) and describe the renormalised phonon energies due to the interaction 
with the photons (see 0 4  of paper 1). The new phonon frequencies QZ,(Q) and the 
corresponding eigenvectors Q) can be obtained from a standard eigenvector- 
eigenvalue problem. 

Let us now turn to a detailed discussion of the Bethe-Salpeter equation for the 
two-particle electron-hole Green function. The Green function K ‘dressed’ by the 
instantaneous electron-phonon interaction satisfies the Bethe-Salpeter equation 

where the inverse propagator K-’ can be written in the form 

Here K;!w is defined by equation ( lb)  and AZ is an additional term to the kernel of 
the Bethe-Salpeter equation due to the scattering by phonons. 

Since in this paper we confine our attention to the first-order Raman effect, we 
consider only the contributions to the kernel AI that involve a single-phonon line. Those 
contributions can be obtained from the kernel 62/6G of the Bethe-Salpeter equation 
(equation (44) of paper 1) in the limit of an instantaneous electron-phonon interaction. 
To do that, we must first obtain an equation (Edward’s equation) for the electron- 
phonon vertex. This equation can be easily obtained by means of the Schwinger equation 
(37c) of paper 1 after differentiation over the phonon source, by using the method of 
Legendre transforms. The corresponding Edward’s equation has the form 

where we have introduced the effective electron-phonon vertex 

x (iop)(r ,  olj^p(-Q - G,,)lr’, 0’) (7b) 

x Dk)(Q + G,, Q + G,; iw,>Pf,(Q + G,). 

Here the functions D$ and P“,@ have been defined by equations (21a) and (16c) of paper 
1 and R, is the unit cell vector. In the limit of an instantaneous electron-phonon 
interaction we have to take into account only the instantaneous part of e(,.). Proceeding 
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as in paper 1 we obtained the instantaneous part of the electron-phonon vertex (7b) in 
the form 

de)-’@ + G , ;  Q + G,;  0) ‘,)’ Pze(Q + G,)  
1 

X 
IQ+GnI “ I Q + G m I  

where R denotes a coordinate operator, and ~ f ) - ’  is obtained from the longitudinal part 
of the dielectric matrix E $ ( Q  + G,; Q + Gm; 0) by a matrix inversion procedure 
(equation (31e) of paper 1). 

Furthermore, it is convenient to write the kernel AI in ( k ,  U) representation, taking 
into account the one-particle band structure of semiconductors. By using kp perturbation 
theory, we have introduced (Glinskii and Koinov 1987) the basis IS, n ,  k ’ ) ,  where k‘ is 
a vector of the Brillouin zone near to the point kb;  kb is the vector of the conduction 
band minimum or the valence band maximum; i is the number of the equivalent extre- 
mum; Sstands for the type of the irreducible representation of the point-group symmetry 
at the point kb; n is the index of the degenerate states at the point kh that have the same 
transformation properties as the basis functions obeying the irreducible representation 
S .  It should be noted that the basis 1 S, n ,  k ’ )  is chosen in a manner that 

= g r l r 2 g k ” k ‘ 2 H ~ t ~ : ( k i 1 )  

where H;$;(k’,l) are the matrices for the kp Hamiltonian, determining the one-particle 
band structure. 

In the limit of an instantaneous electron-phonon interaction, the Bethe-Salpeter 
equation (6a), written in the new basis, assumes the form 

where the following abbreviations have been used IS1, n l ,  k?)  = 11): 

The renormalised polariton energies are just the poles of the function I?. Thus the 
contribution from the polariton state o,(Q) to the above Green function is 

where AK is a term regular at z = w,(Q). For a given wavevector Q, the poles w y ( Q )  
and the corresponding wave functions Q?,yp are the solutions of the Bethe-Salpeter 
equation 

Taking into account only the single-phonon-line contributions to the kernel AI,  and 
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using equations (38b), (44a)-(44g) of paper 1, the inverse two-particle electron-hole 
propagator 

is obtained in the form 

where the kernel AI is given by the following equation: 

Here 

N + ( o )  = n ( o )  + 1 

is the Bose-Einstein distribution function of phonons. The electron-phonon effective 
vertex w p , k  in the instantaneous limit has the form 

N-(o) = n(w)  n(o)  = [exp(ho/kB T )  - I]-' 

-61,(4Iexp{i(Q + Gn) *f)I2)]. (11) 

Here MO is the mass of the atoms in the unit cell, and Vo is the volume of the cell. 
The symbol S12 denotes 6slS2S"In2~rl '2Skt'k~~.  The terms in parentheses correspond to 
the interactions of the electron in the conduction band and the hole of the valence band 
with the phonon. 
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In order to obtain the solutions of equation (9c) we introduce the Green function for 
‘mechanical’ excitons which is ‘dressed’ by electron-phonon interaction, and which 
takes into account the Elliott exchange interaction 

Proceeding as in paper 1, it is easy to show that for a given wavevector Q the solutions 
oi,(Q) of equation 9(c) are solutions of the following equation: 

(13) ll 
2 

detll(:) E@p(Q, U,) - S,Q2 + Q,Qp = 0 

where 

This proper self-energy part contains both a real and an imaginary part. The real part 
contributes to a shift in the energy holo)(Q) of the excitonic polaritons, while their 
damping rate is proportional to the imaginary part of I=I,(Q, U,). 

2.3. Theory offirst-order Raman effect 

Since the damping rate of the polariton mode is given by the imaginary part of the 
corresponding pole u,(Q) of the two-particle electron-hole Green function, the decay 
rate of the number of quanta in the incident radiation is equal to 2 Im uJQ) (Mills and 
Burstein 1969). 

In the cubic crystals there are two types of excitonic polaritons. For a given wave- 
vector Q,  the transverse polariton modes U,@) are solutions of the following equation: 

u ~ E ( Q ,  U, )  = czQ2 (15a) 

where 

Here i = 1 or 2 and the phonon-polarisation vectors ew(i; Q) have been introduced 
in § 2.1. 

It is worth noting that the kernel (lob) involves only a single-phonon-line con- 
tribution, while the two-particle Green function KZ , and therefore the proper self- 
energy fi( Q, U,) obtained by the ladder graph approximations, contain higher-order 
phonon contributions. 
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In the specific case, where the electron-phonon interaction is small, one can solve 
equation ( 1 5 4  by expanding U,,( Q )  in apower series with respect to the small parameter 
of the electron-phonon interaction 

where Awl')  and Sw$') are the real and imaginary parts of the lowest-order contribution 
to the excitonic polariton dispersion relation wio)(Q)  due to the electron-phonon inter- 
action. Since we treat this interaction as a small perturbation, the frequency shift 
Awl') can be neglected. 

In order to obtain So$') we separate the lowest-order contribution to E(Q, wko)) as 
follows: 

w u ( Q )  = wko) + AwL')(Q) + iSwk')(Q) + . - - (16) 

where &(e, oL?) can be obtained by means of equations (2)-(3) of the present paper 
and equations (35) from our previous work (Glinskii and Koinov 1987): 

where q ( Q )  is the dispersion relation of the 'mechanical' excitons, when the Elliott 
exchange interaction was taken into account, and j ' , (Q) is the exciton current. 

Since the energy of the incident photon has been assumed to be in the region where 
the exciton wl(Q) and photon Q,,(Q) = cQ,  dispersion relations are intersected, the 
condition wl(Q) # wLo)( Q )  must be fulfilled. In this energy region the dielectric function 
(21b) is real since the imaginary part of KE is equal to zero. 

The lowest-order contribution aI?(') in equation (17a) can be obtained from 
equations (14b) and (15c): 

1 1 3  
Sn(')(Q, wlo)) = - (2  f A Q ) e , ( i ;  Q )  11)KL( 1 uio)(Q)) h2C2V 2 4  

Since &(e; wl0) )  is real, from equation (15a) follows 

where the 'energy transport' velocity V$Q is defined by 
SwL')(Q) = ( 2 n h / Q ) V 2 Q  Im S f i ( ' ) ( Q ,  wio))  

V 2Q = 2c2 Q{(a /aw)[w2 &(e, U ) ]  = wp)(Q)} - '  

In order to obtain an exact expression for Im SI?(') one has to know the exact form 
of the two-particle propagator 

For w near to wIo)(Q) we have 

where AK,- ,  is a term regular at w = wio)(Q).  
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In this paper we are primarily interested in the msprocesses: that means the polariton 
mode wL0)(Q> emits (Stokes scattering) or absorbs (anti-Stokes) a phonon of a wave- 
vector k and energy hf i , (k ) ,  thus making a transmission to the final polariton state 
w;o)(Q’) = O ; ~ ) ( Q )  ? f i2 , (k) .  For those processes we can neglect the regular term in 
equation (19a). Since the resonant terms of K e - m  and D,(Q, U )  are connected by 
equations (4.5) of paper 1, the following equation has to take place: 

If one takes into account only the resonant term in equation (19b), then the decay 
rate of the number of quanta in the incident radiation r ( v  + v ’ ;  Q) that comes from the 
processes in which an excitonic polariton mode ( v ,  Q) emits or absorbs a phonon of a 
wavevector k ,  thus making a transition to the final polariton state (v‘ , Q + k ) ,  is obtained 
in the following form: 

r,(v+ v ’ ;  Q )  = (2z/hv> C. ZIMp,k(Q, UL’’(Q); Q 
I r k  

+ k ,  oLo)(Q + k ) ) I 2 N , ( ~ , ( k ) ) S [ ~ o l o ) ( Q  + k )  

k hf i , (k )  - ~UL’’(Q)] (20a) 

where 

M,,k(Q, wL”(Q); Q + k ,  mLq’(Q + k ) )  C C C {ee(i;  Q )  
I I‘ 1=1.2  

X S ‘ ( Q ;  ~Lo’ (Q))wp.k( l ,  Q ;  l’ ,  Q + k ) S $ *  

x (Q + k ;  oLo)(Q + k))ez(j, Q + k )  

+ e:(i;  -Q)s‘,*(-Q; -UL’’(Q>)w~,k(l, -e; l ’ ,  -Q-k )  

x Sg( -Q - k ;  - U(?) (Q + k))ep( i ;  -Q - k ) )  (20b) 

and 

- l i f ;<-Q> I * y2. 
[wLO’(Q) + ~ r ( Q > l ~  

Here wp,k is the electron-phonon matrix element 
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I Q  where Y j1 are the wavefunctions of the ‘mechanical’ excitons, when the Elliott exchange 
interaction was taken into account, and 12) = pis2, n 2 ,  k?) - T is the time inversion 
operator. In equation (20d) the even and odd indices indicate the states from the valence 
and conduction band respectively. 

Let us now consider the specific case when the incident radiation is in the frequency 
region below w,(Q) associated with the smallest band gap. In this case, however, the 
normal mode wLo)(Q), as well as the final polariton state oio)(Q + k ) ,  are on the lowest- 
frequency branch of the polariton dispersion relation. It is easily seen that if (i) we do 
not consider the local-field effects, and (ii) we put the renormalised phonon frequencies ap equal to the ‘bare’ ones, equations (24) give the same results as those obtained by 
Mills and Burstein (1969). 

Furthermore, we will consider the RRS by optical phonons in polar semiconductors. 
A characteristic feature of the optical processes in polar semiconductors is the pre- 
dominance of the interaction of the photons with LO phonons as compared with phonons 
of the other types. Thus in cubic polar semiconductors with two atoms per cell, 
&(k)  = fiLo(0) = wo,  and by neglecting the short-range part of the effective electron- 
phonon vertex (11) in comparison to its long-range part, we have 

where K, and K~ are the high- and low-frequency limit of the dielectric matrix (see § 4 of 
paper 1). 

Finally, we can obtain an expression for the Raman efficiency per unit length per 
unit solid angle (l /L)d S/d S2,. Proceeding in a similar way as in the paper by Mills and 
Burstein (1969), one sees that the Raman efficiency can be written in the form 

3. Results and discussions 

In order to obtain a simple understanding of the corrections to the Raman efficiency 
due to local-field effects, we consider direct-gap semiconductors with TD point-group 
symmetry. We assume that the lowest conduction band has a r6 symmetry and the 
uppermost valence band is the one with Ts symmetry. 

For a given wavevector the transverse polariton modes wLo’(Q) satisfy equation 
(lsa), where in the case of a simple one-oscillator model &(e, U), defined by equation 
(17b), assumes the form 

Here &b is the ‘background’ dielectric constant, ET(Q) = ET + h2Q2/2M,,, is the 
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dispersion of the ‘mechanical’ excitons when the Elliott exchange interaction was taken 
into account, and Me,, is the effective exciton mass. E T  and E L  = E T  + ALT denote the 
energies of the transverse and longitudinal excitons at Q = 0; ALT is the longitudinal- 
transverse splitting. 

If the local-field effects are neglected, the dielectric function E(Q,  U )  is equal to the 
G, = G, = 0 component of the dielectric matrix E( Q + G,, Q + G,; w).  The last matrix 
is defined by means of the two-particle Green function of ‘mechanical’ excitons (see 
equation (18) of paper 1). The ground state of the ‘mechanical’ excitons in our case is 
transforming as rl €9 r6 €9 r8 = r3 6’ r4 $T5. Thus, if local-field effects are neglected, 
we have the dielectric function (23), where E T  = Er3Br4Br5. 

If local-field effects are taken into account the dielectric function &(e, w )  can be 
obtained by means of the Green function of ‘mechanical’ excitons when the Elliott 
exchange interaction is taken into account. The Elliott exchange splits the T5 excitons 
from the r3 63 r,excitons. Therefore, ETin equation (23) is given by E T  = E r 3 e r 4  + AT, 
where the splitting AT is proportional to the following expression (Rossler and Trebin 
1981): 

Here 1 z )  and 1 R )  denote the orbital parts of the zone-centre Bloch functions for the 
valence band and for the conduction band respectively. The longitudinal part of the 
exchange interaction splits the longitudinal exciton r5L from the transverse excitons r5T. 
Thus one can write ET = ErjT = Er3Br4 + A T  and EL = ErjT + A L T .  

Let us turn to a detailed discussion of the contributions of the local-field effects to 
the Raman efficiency. Those corrections are determined by the frequency dependence 
of the matrix element MLO,K and by the changes in the group and ‘energy transport’ 
velocities. 

Usingequations (20) it is not difficult to see that the corrections to the matrix element 
MLO,K due to the local-field effects are determined by the frequency dependence of 
S‘,(Q; u$,’)(Q)). Taking into account equation (23), we find that SLj  - ( E t  - E$)’/*, 
so the local-field corrections to the matrix element MLO,K may become more important 
from one material to another with increasing ratio AT/Er3Br4. 

We have calculated the dispersion of the excitonic polaritons, the group and ‘energy 
transport’ velocities for copper halides. The excitonic polariton parameters used in the 
numerical calculations are as follows (Levy et af 1985): 

CuCl CuBr 

A L T  = 0.0212 eV 

AT = 0.0690 eV 

A L T  = 0.0122 eV 

A T  = 0.0170 eV 

Er3Br4 = 3.200 eV Er3er4 = 2.9627 eV 

Me,, = 2.5 mo Me,, = 0.93 mo 

& b  = 5.0 &b = 5.4. 

Since the ratio AT/Er3Br4 in CuBr is a little less than in Cucl,  the corrections due to 
the local-field effects to the group and ‘energy-transport’ velocities in CuCl should be 
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3.E 

- 
> 

cu 
2 3.f 

3.1 i 
1 

0.1 0.2 0.3 0.4 

o (lo6 cm-’)  V , k ,  V E / c  

Figure 1. Dispersion of the upper excitonic polariton branch, group velocity and ‘energy- 
transport’ velocity (dotted line) in CuC1, calculated from a one-oscillator model: A, with; 
B, without local-field effects. The coincidence between the calculated values of V, and V ,  is 
in agreement with the experimental results (Levy et a/ 1985). 

3.26 

- 3.2;  
- 5 
cu 

3.18 

3.14 

-h 
3 6 9 10-6 10-4 10-2 

a [lo6 cm-‘) V, IC,  V,/c 

Figure 2. Dispersion of the lower excitonic polariton branch, group velocity and ‘energy- 
transport’ velocity (dotted line) in CuCI, calculated from a one-oscillator model: A, with; 
B, without local-field effects. 

higher. The results for CuCl are presented in figures 1 and 2. We find: (i) the local-field 
effects modify significantly both the upper and the lower polariton dispersions: (ii) in 
the region 0.25 < Q < 0.35 x lo6 cm-’ the changes in the group and ‘energy transport’ 
velocities due to the local-field effects are of the order of 20-30%. 
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In conclusion, some comments should be made concerning the problem of an electron 
and hole interacting with each other via a Coulomb potential, while each of them is 
interacting via the Frohlich term with the longitudinal optical phonons. From equation 
(12) one sees that the Coulomb potential is screened by the high-frequency dielectric 
constant, while the kernel (lob) is just the lowest-order phonon exchange contribution 
to the electron-hole interaction. Taking the approximation 

and using equation (lob), we can rederive the results by Oswald and Egri (1983) for the 
effective electron-phonon interaction in polar semiconductors. 
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